
Analyzing Functions 
 
 

Implicit Functions and Implicit Differentiation 
 

In mathematics, an implicit function is a generalization of the concept of a function  in which the dependent variable, say,  has not 
been given "explicitly" in terms of the independent, say,  To give a function explicitly is to be able to express it as By 
contrast, the function is implicit if the value of  is obtained from by solving an equation of the form  

 

Definition of an Implicit Function 
Consider the equation  Then 

is an implicit function of in if there exists a function  on such that  

 

An implicit function such as can be a useful way to express a functional relationship that may be too complicated, 

inconvenient or even impossible to solve for  in terms of  For example, the implicit function would be impossible to 
solve for  in terms of  In another situation, the equation may fail to define a function at all and would express a multi-

valued function. For example, the equations , called the Cayley’s Sextic, (see Figure 1) and 

 called the Tricuspoid (see Figure 2) , express such multi-valued functions, that would be too 
difficult, if not impossible, to solve for  in terms of  

 

  

                                                                       Figure 1                                               Figure 2 
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In spite of the difficulties in expressing an implicit function explicitly, it is relatively easy to determine its derivative  As an 

example, determine implicitly, if In determining implicitly, you must think “ is a function of ”. To 

emphasize this point, let us suppose that there exists a function  that satisfies the implicit function That is, 

 

Then, we wish to find  Differentiating both sides with respect to we obtain 

 

Exercises: Find implicitly if 

1.  

2.  

3.  
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                                                       Rate of Change 

The classic example of a rate of change is that of velocity in rectilinear motion. Consider some object whose motion is on the real line 
and whose position at any time from the origin is given by the function called the equation of motion. We are all familiar 
with the concept of an average velocity in which we compare the change in position with the corresponding change in time by 
dividing the former by the latter. Thus, if we consider the motion of our object during an interval of time or , we 
obtain the following definitions1: 

Average Velocity  
Let on  

The average velocity during  

. 

 

From this average, we obtain the concept of an instantaneous velocity at by taking the limit of this average as   

Instantaneous Velocity  
Let on  

The instantaneous velocity  at   

 provided this limit exists. 

 

In the same way, we first define the average acceleration  during  Then, from this average, we obtain the concept of an 
instantaneous acceleration  at by taking the limit of this average as  

Instantaneous Acceleration  
Let on  

The instantaneous acceleration  at  

 provided this limit exists. 

 

In comparing two quantities, we do not have to restrict ourselves to position versus time. Realizing that we can compare any two 
quantities and taking our motivation from the concept of velocity, we can abstract this latter concept of velocity and, thus, derive the 
concept of an instantaneous rate of change of one quantity with respect to another quantity. Toward this end, consider two quantities 

functionally related by  

 

 

                                                
1 We must allow both and when considering averages and limits. However, to save space we will usually only illustrate 
the case in which . 
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Average Rate of Change of the Quantity   

Let on  

The average rate of change of the quantity  with respect to the quantity  during  

. 

 

Instantaneous Rate of Change of the Quantity   
Let on  

The instantaneous rate of change  of  the quantity  with respect to the quantity at some   

provided this limit exists. 

 

 

 

 

Examples: 

1) The surface area  of a sphere of radius is  
a) What is the rate of change2 of the surface of a sphere with respect to its radius  
b) What is the rate of change when  
c) How must be chosen if the rate of change is  

Answers: 

. 

(a)  

(b) . 

2) For what value of is the rate of change of with respect to  the same as the rate of change of 

with respect to ? Assume are constants with  

Answer:  We must have: Thus,  

 

                                                
2 We will frequently use the phrase “rate of change” without modifier to mean “instantantaneous rate of change”. 
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Exercises: 

1) Car A traveling west at 30 mph passes intersection P at noon while car B traveling south at 40 mph passes intersection P 
three hours later. How fast is the distance between the cars changing at 4:00 p.m.? 

2) A spot light is on the ground 20 ft away from a wall and a 6 ft tall person is walking towards the wall (See Figure 3).  What is 
the rate of change of the height of the shadow with respect to the person’s distance from the spotlight at the instant the person 
is 8 feet from the wall?   

 

Figure 3 

3) A 15 foot ladder is resting against the wall (See Figure).  The bottom is initially 10 feet away from the wall and is being 
pushed towards the wall.  How fast is the top of the ladder moving up the wall with respect to the distance the bottom of the 
ladder is from the base of the wall after bottom has been pushed in three feet? 

 

4) Water is being poured into a conical reservoir (Figure 4).  The reservoir has a radius of 5 feet across the top and a height of 
14 feet.  At what rate is the volume of the water changing with respect to the radius when the depth  is 7 feet? (Hint: By 
similar triangles See Figure 4) 

The volume of water in the reservoir is given by  

 

                                                                Figure 4 
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5) A 13-foot ladder is leaning against a vertical wall. If the bottom of the ladder is being pulled away from the wall at the rate 

of 2 feet per second, how fast is the area of the triangle formed by the wall, the ground and the ladder changing at the instant 
the bottom of the ladder is 12 feet from the wall? 

 

6) Sand is pouring from a pipe at the rate of 16 cubic feet per second. If the falling sand forms a conical pile on the ground 
whose altitude  is always the diameter of the base  how fast is the altitude increasing when the pile is feet high? 

Hint: See the Figure and use the fact that the volume . 

            

 

7) An object moves along the axis. Its position at each  is given by . Determine the 
a. (2 pts) formula for the instantaneous velocity . 

 
b. (2 pts) time(s) at which the object is changing direction, if ever. 

 
c. (2 pts) formula for the instantaneous acceleration . 

 
d. (6 pts) time interval(s), if any, during which the object is 

 
i) speeding up: ______________________________? ii) slowing down:_____________________________? 
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8) A large balloon is rising at the rate of 20 ft/sec. The balloon is 10 ft above the ground at the point in time that the back end 

of a car is directly below the bottom of the balloon (see first diagram).  The car is traveling at 40 ft/sec. What is the rate of 
change of the distance between the bottom of the balloon and the point on the ground directly below the back of the car one 
second after the back of the car is directly below the balloon (see second diagram)?   

  

 
Start 

 
 

 
After 1 second 

 

 

 

9) A circle starts out with a radius of 1 cm. (at time  and grows for If the area of the circle is increasing at the 
rate of 2 cm2 per second. 

a. Find the rate of change of the radius with respect to time when the radius is 5 cm.   
b. What is the radius when  

 

10) A sphere is increasing at a rate of 10 in3/sec. Find the radius of this sphere at the moment its surface area is increasing at the 
rate of 5 in2/sec.   

 

 

 

 



 8 
11) A fish is reeled in at a rate of 1 foot per second from a point 10 feet above the water.  At what rate is the angle between the 

fishing line and the water changing when there is a total of 25 feet of fishing line out? 
 

Hint:  Let the amount of fishing line out. 
 Let the horizontal distance from the fish to the projection of the tip of the fishing pole onto the water. 
 Let angle between the fishing line and the water. 

 Given:  

 Find:  

 

 
 
 

 

12) The dimensions of the cross sections of an isosceles trapezoidal tank consists of  a base of 4 feet, a base of 10 feet, and a 
height of 12 feet, as shown in the figure below. It is also 100 feet wide (not shown). If the tank is filled by pumping water 
into it at a rate of 50 cubic feet per minute, how fast is the water level rising when it is 4 feet deep? Hint: The volume of 
the isosceles trapezoid of water is  

                   
 
 
 

13) Two people are 50 feet apart.  One of them starts walking north at a rate so that the angle shown in the diagram below is 
changing at a constant rate of 0.01 rad/min.  At what rate is distance between the two people changing when radians? 
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Mean Value Theorem 

 
 
 

Inequality Preserving Limit Theorem 
Let and . 

If for all some then  
 

Proof: By contradiction. Assume Let Then since  and there exists a 

such that, for  
 

a)  
 
b)  
 
c)  

 
 
From a), b) and c), we obtain, for  

 
This is a contradiction. � 
 
Remark: This theorem is also true for one-sided limits. 
 
 

Definition of Some Important Points 
Let be defined on an interval I that contains  

 

 
 

Definition of a Critical Point 
Let be defined on an interval I that contains  

c is a critical point of  f a singular point or a stationary point of f. 
 

Find the critical points of on  

Derivative of f Critical Points of f 
 

 

 

 

 
 
 
 

Definition of an Absolute Extremum  
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Definition of a Local Extremum 
Let  f  be defined on an interval I  that contains the interior point c. Then 

    has a local maximum/max at if an open interval  
 

has a local minimum/min if an open interval  
 

 
 

Definition of an End Point Extremum 
Let  f  be defined on an interval I  that contains the end point c. Then 

                               has an end point maximum/max at if a half open subinterval  
                            with   

                              has an end point minimum/min at  if a half open subinterval  
                            with   

 
 
 

 
 
 
 
 
 
 
 
 

 

Let f  be defined on an interval I  that contains c. Then 

has an absolute maximum/max at  if   

has  an absolute minimum/min  at  if   
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Critical Point Theorem (Fermat’s Theorem) 

Let be defined on an interval I. 
If has an absolute, local or endpoint extremum at then c is a critical point of  

 
 
Proof: We may assume that c is neither an endpoint nor a singular point of ; otherwise, we are done.  Therefore c is an interior point 
of and  exists. Thus,  has a local extremum at . We may also assume, without loss of generality, that  has a local 
maximum3 at . To finish, we must then show that . So, since has a local maximum at an open interval  that 
contains and is a subset of such that In particular,  
 

a)  

 

b) . 

 
But, since exists,  Thus, from a) and b), we then obtain that and . Hence,  
� 
 
 
 
Max-Min Existence Theorem (MMT): If f is continuous on the closed interval , then f attains an absolute  maximum and  
minimum in . 
 
 
 
 
Remark: If either the ‘continuous’ requirement or the ‘closed interval’ requirement is dropped from the Max-Min Existence Theorem, 
then the theorem is false. For example, 
 

Continuity Dropped Closed Interval Dropped 

  

  
 
 
 
 
 

                                                
3 Similar proof if has a local minimum at . 



 12 
Example: 

 
 

Find the absolute maximum and minimum of on . 

The Max-Min Theorem guarantees that f attains both a maximum and minimum on  and the Critical Point 
Theorem guarantees that these extrema occur at critical points of  f. 

Critical Points  

  

 
 
Exercises: 

1) Let  . 

a) State the Max-Min Existence Theorem. 
b) State the Critical Point Theorem. 
c) Determine the critical points of  
d) Determine the absolute maximum and minimum of   

 
 

Find the absolute maximum and minimum values of in problems 3)-7). 
 

2) on  

3) on  

4) on  

5) on  
 

6) on  
 

7) on  
 

8) A model of the velocity of the space shuttle Discovery that deployed the Hubble Space Telescope in 1990 from liftoff at 
until the solid rocket boosters were jettisoned at seconds is given by 

Find the absolute maximum and minimum values of the acceleration of the 
shuttle between liftoff and the jettisoning of the boosters. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



 13 
Rolle’s Theorem (RT) 

Let be continuous on the closed interval  and differentiable on the open interval  
If then  

 
 
Proof:  The theorem is trivial if is constant on . Therefore, we may assume that is not constant on . By the Max-Min 
Theorem, has both an absolute maximum and absolute minimum on . Clearly, both the maximum and minimum cannot occur 
at the end points of ; otherwise,  would be constant on . We may therefore assume that has an extremum at some 

.  By the Critical Point Theorem, since is neither a singular point nor an end point of on , we conclude that 
  � 

 
 

Mean Value Theorem (MVT) 
Let be continuous on the closed interval  and differentiable on the open interval  Then 

 

 

Proof:  Define where the line determined by the points and 

Now apply Rolle’s Theorem to on . Therefore, That is, 

  � 

 
Examples: 

1) Prove that the equation has exactly one real root. 
 
Proof: Let We will first show that has at least one zero: Applying the Intermediate Value Theorem to 

on we see that  is continuous on and, Thus,  has at least one real zero in 
We now show  this is the only real zero of  on  By contradiction, assume that has at least two zeros in 
say,  and with and  Then, by Rolle’s Theorem, 

But on This is a contradiction . � 
 

2) Suppose an object moves in a straight line with position function .  If  is continuous on  and  
differentiable on prove its average velocity from to  is taken on as an instantaneous velocity by our object 
for some  

 

Proof:  The average velocity of  over  is given by  Thus, by the Mean Value Theorem, 

 � 

 
3) If is continuous on and differentiable on with and for all values of   how large 

can possibly be?  
 

Proof:  By the Mean Value Theorem, we have for some  This implies that 

Thus,  � 
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Monotonicity 

 
 

Definition of a Strictly Monotonic Function 
Let f be defined on an interval I. Let  and  

f  is increasing  on I  if  

f  is decreasing  on I  if  

 
 
 
 
 

 Monotonicity Theorem 
Let  f  be continuous on an interval I and differentiable on the interior of I. 

(i)                     

(ii)                     
(iii)                    

 
 
Proof of (i): Let with To show  Apply the MVT to on Therefore, there exists some 

such that  Since and we have that or Thus, 

  � 
 
Proof of (ii): Let with To show  Apply the MVT to on Therefore, there exists some 

such that  Since and we have that or Thus, 

  � 
 
Proof of (iii): Let with To show  May assume that  Apply the MVT to on 

Therefore, there exists some such that  Since and we have that 

or Thus, since were arbitrary,   � 
 
 

Corollaries 
Let  f , g  be continuous on an interval I and differentiable on the interior of I. Then 

(i)                     
(ii)           
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Monotonic Endpoint Extension Theorem 

Let f  be continuous at and monotonic on the open interval .Then 
f  is monotonic on the closed interval . 

 
Proof:  Without loss of generality, we may assume that  on ( if on , consider ) .  Let . To show 
that . Choose with . Let . Then 
 

 
 

Since  on , we have, for ,   
 

 
 

By the Inequality Preserving Limit Theorem and the continuity of  at ,  we have 
 
(*)                                        

 
Since , we have from (*) 

 
 

 
Thus, . � 
 
 

Find where  and where  

 
We use the Monotonicity Theorem to construct the Sign Chart of  

Sign Chart of  
Thus   on  and                            0                0              0 

 
 
 
 
 

Find where and where  

 

We use the Monotonicity Theorem to construct the Sign Chart of  
 

Sign Chart of  
                                        0                           ND                        0 

 

The Sign Chart tells us that and  on  
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Find where  and where  

 

We use the Monotonicity Theorem to construct the Sign Chart of  
 

Sign Chart of  
                                       0                                                         0 

 

The Sign Chart tells us that and  on  

 
 
 
 
 

Find where and where  

 
We use the Monotonicity Theorem to construct the Sign Chart of  

Sign Chart of  
                                             0                                             0 

  

The Sign Chart tells us that  on  and  

 
 
 
 

Find where and where  

 

We use the Monotonicity Theorem to construct the Sign Chart of  
Sign Chart of  

                                                           0                   ND 
 

The Sign Chart tells us that and  on  
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Speeding Up/Slowing Down Theorem 

Consider some object in rectilinear motion on the real line with position and velocity  

during the interval of time . Let be continuous on  and 
differentiable on . Then 

1.   If  and  on , then 

i) The object is Speeding Up on  . 
ii) The object is moving Toward the Left on . 

1. If  and  on , then 

i) The object is Speeding Up  on  . 
ii) The object is moving Toward the Right on . 

2. If  on  and  on , then 

i) The object is Slowing Down  on  . 
ii) The object is moving Toward the Right on .  

3. If  on  and  on , then 

i) The object is Slowing Down  on  . 

ii) The object is moving Toward the Left on .  

 
 

Proof:  We shall only prove case 1, since the other cases have a similar proof. Now since  on , by the 
Monotonicity Theorem, . Thus, on . This says our object is speeding up on .  Again, by the 

Monotonicity Theorem, since  on ,  on . This says our object is moving toward the left on .  
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Concavity 
 
 

Definition of Concavity 
Let f be differentiable on an open interval  

 

 
 
 
 

Concavity Theorem 
Let f be twice differentiable on an open interval I. 

 

 
 
 
 
 
 
 
 

Find where  is concave up and where it is concave down. 

 

We use the Concavity Theorem to construct the Sign Chart of  
Sign Chart of  
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Definition of an Inflection Point 
Let f  be continuous at  

 

 
 
 

Critical Point Theorem for Inflection Points 
Let be an inflection point of Then 

  is a critical point of  that is, or  is not defined. 

 
Proof: Assume it is not the case that  is not defined. Therefore  exists and, hence,  is continuous at c. Now 
since  is an inflection point of f, We may assume without 
loss of generality that 4. Therefore  because is continuous at 

Thus . Since exists, this implies that  as in the proof of the Critical Point Theorem.  
 
 

Find the Inflection Points of  

 

Inflection Points Possibly Occur at 
 

 

We use the Concavity Theorem to construct the Sign Chart of  

Sign Chart of  

                                                                
 

The Sign Chart tells us that an inflection point occurs at  

 
 

Find the Inflection Points of  

 

 Inflection Points possibly occur at 
 

 

We use the Concavity Theorem to construct the Sign Chart of  

Sign Chart of  

 

The Sign Chart tells us that inflection points occur at . 
 
 

                                                
4 Similar proof if  
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Find the Inflection Points of  

 

Inflection Points possibly occur at 
 

 

We use the Concavity Theorem to construct the Sign Chart of  

Sign Chart of  
                                                                                      

 

The Sign Chart tells us that an inflection point occurs at  
 
 
 
 

Sign Preserving Limit Theorem 
Let Then 

such that keeps the same sign as  
 
 

Proof: Let Then, since , there exists a such that  

 . 
 

Case   

Case   � 

 
Remark: This theorem is also true for one-sided limits. 
 
 
 
 

First Derivative Test Theorem 
Let be continuous on an open interval that contains the critical point c. Then 

(i)                                    on  and  on  is a local maximum. 
(ii)                                    on  and  on  is a local minimum. 
(iii)                             keeps the same sign on both sides of is not a local extreme value. 

 
 
 
Proof of (i): Assume  on  and  on Since  f is continuous on both  and , we have by the 
Monotonicity Theorem that on  and Thus,  is a local maximum on . � 
 
Proof of (ii): Assume  on  and  on  Since  f is continuous on both  and , we have by the 
Monotonicity Theorem that on  and Thus,  is a local minimum on . � 
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Proof of (iii): Similar to the proofs of (i) and (ii), in which we either have on  or on . Thus can not be a 
local extreme value.  � 

Second Derivative Test Theorem 
Suppose and exists. Then 

(i)                                                          is a local minimum. 
(ii)                                                          is a local maximum. 

 

Proof of (i): Assume . So  is continuous at c.  Since such that 

, when  or  Thus,  

 

by the First Derivative Test,  is a local minimum. 

Proof of (ii): Assume . So  is continuous at c.  Since such that 

,  when  or Thus,  

 

by the First Derivative Test,  is a local maximum. � 
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Exercises: 
 

 
1. One end of a 27-foot ladder rests on the ground and the other end rests on the top of an 8-foot wall. As the bottom of the 

ladder is pushed along the ground toward the wall, the top extends beyond the wall. Find the maximum horizontal overhang 
of the top end (see Figure 6). 

 

 
Figure 6 

 
2) Find the coordinates of that maximizes the area of the rectangle shown in the figure below. 

 

              
 
 

3) A rectangular piece of paper is 12 inches high and six inches wide. The lower right-hand corner is folded over so as to reach 
the leftmost edge of the paper (See figure.). Find the minimum length of the resulting crease.  
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4) Find the point  on the graph of  that is nearest to the point by determining the following, where S denotes 
the function that is to be minimized. 

e)         
f)  
g) Critical points of  
h) Test the Critical Points:                                                                                               
i) Answer:  the point  on the graph of  that is nearest to the point  

 
 
 
 

5) An advertising flyer is to contain 50 square inches of printed matter, with 2-inch margins at the top and bottom and 1-inch 
margins on each side. What dimensions for the flyer would use the least paper? 

 

 
 
 
 

6) An advertising flyer is to have an area of 50 square inches, in which the printed matter will have 2-inch margins at the top 
and bottom and 1-inch margins on each side. What dimensions for the flyer would maximize the printed matter? 

 
 
 
 
 

7) The graph of is a "tilted" ellipse (See diagram.). Among all points (x, y) on this graph, find the largest and 
smallest values of y. Among all points (x, y) on this graph, find the largest and smallest values of x. 
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8) Problem: There are infinitely many lines that pass through the point  and form a right triangle with the coordinate axes 

(see the accompanying figure). In this problem, you are to justify the existence of that line through that minimizes the 
area of the right triangle thus formed by answering the following questions: 

 

 
 

a) State the Max-Min Theorem (MMT). 
b) Determine a function  that expresses the area of any of the right triangles formed by the axes and a line that 

passes through . 

c) Determine the domain Dom  

d) Apply MMT to  
 

 
 

 
9) A humidifier uses a rotating disk of radius  which is partially submerged in water (shown in the lower region of the figure 

labeled WATER). The most evaporation occurs when the exposed wetted region (shown as the upper region of the figure 
labeled WETTED) is maximized. Show this happens when  (the displacement from the center to the water) is equal to 

. 

 
 

 
 

10) The function  has a local minimum at  and satisfies  Find    and  
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11) What are the dimensions and the volume of the square pyramid that can be cut and folded from a square piece of cardboard 
20 by 20 square inches as illustrated in Figure 4 so that its volume is a maximum? 

 
 

 
 
                                                                                                   Figure 4 
 
 
 
 
 
 

12) What are the dimensions and the volume of the square pyramid that can be cut and folded from a square piece of cardboard 
20 by 20 square inches as illustrated in Figure 5 so that its volume is a maximum? 

 
 
 

 
 

Figure 5 
 
 
 

13) Which of the two constructed square pyramids from the above problems has the larger volume? 
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Asymptotes 
 
 

Definition of a Horizontal Asymptote (H.A.) 

 

 
 
 
 
 

Find the horizontal asymptotes of  

 
Sign Chart of  

                                                                 0             ND 
 

The line is an H.A. 

and  

 
 
 
 

Definition of a Vertical Asymptote (V.A.) 

 

 

Find the vertical asymptotes of  

 
Sign Chart of  

                                                                 0             ND 
 

The line  is a V.A. 

 and  

 
 
 
 

Definition of an Oblique Asymptote (O.A.) 
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Find the oblique asymptotes of  

The line  is an O.A. 

 

 
 

Find the oblique asymptotes of  

The line  is an O.A. 

 

 
 
 

Find the horizontal asymptotes of  

 
Sign Chart of  

 
The line is an H.A. 

and  

 

Find the horizontal asymptotes of  

 
Sign Chart of  

                                                           0                   ND 
 

The line is an H.A. 

and  

 
 

Find the vertical asymptotes of  

 
Sign Chart of  

                                                           0                   ND 
 

The line  is a V.A. 

 and  
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Curve Sketching 

 
Sketch the graph of  

            

                             
                                               0                  0                  
       ---0 ----------   
 
                                                                       0                                             
        -----------------------------------------0---  

 

 
 
 

Sketch the graph of  

       

                
                   --------------------------------------   
 
                                      0                                0           
                  --------------- --------------   
 
                                     0                                           0                           

                 --------- --------------     
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Sketch the graph of . 

            

                             
                                                                0    ND    

---------     
                                                           0                       ND                                                              

---------- ---------0------------  
 

                                        0                                                ND       
-------------- ---------- ------- 0  
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Antiderivatives 

 
 
Most mathematical operations have anti operations. In algebra, for example, the anti operation of multiplication is division, that of 
addition is subtraction, and that of raising to a power is taking a root. More commonly, these anti operations in algebra are called 
inverse operations. As you can see, each anti operation undoes the original operation. In the Calculus, the anti operation of 
differentiation (finding the derivative) is called antidifferentiation or integration. The result of an application of antidifferentiation   

is called an antiderivative. For example, since we say that is an antiderivative of we say 

that is an antiderivative of Please note that antiderivatives are not unique. For example, we also have  
So, is also an antiderivative of  
 

Definition of an Antiderivative 
Let be continuous on an interval  

is an antiderivative of on   if is continuous on and on the interior of  

 
By a previous corollary to the Mean Value Theorem (MVT), if on an interval then and must differ by some constant 
on That is, on for some constant Therefore, if is an antiderivative of on  the most general antiderivative 
of on is given by on for some constant Since  denotes differentiation with respect to we will at times 
suggestively use to denote antidifferentiation with respect to  Thus,   on  Even though the notation 

is most reasonable, this is not the  notation that is universally used to denote the general antiderivative. This latter notation is 

reserved for or  and is due to Leibniz. 

 
Definition of the General Antiderivative or Indefinite Integral 

Let be continuous on an interval   

We denote by   the indefinite integral (general antiderivative) of on Then, 

if is an arbitrary constant, called the constant of integration, 

   if on  

 
See Figure 7 for a graphic description of the relationship between integration and differentiation. 
 

 
Figure 7 

Stated in another way, 
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Basic Table of Indefinite Integrals 

 
 

1.  

2. � 

3.  

4.  

5.  

6.  

7.  

8.  

9.  

10.  

11.  

12.  

13. where  

 Proof:   � 

 
 
 
 

Linearity of the Indefinite Integral 
 
 

Let �.	
  Then 
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Definition of the Differential 

Let on  

The differential on   if on  

 
 
 
Let  Using the Differential, we may write 
 

 

 
 
Example: 
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Differential Equations 

 
 

Def: A differential equation is an equation involving the independent variable x, the dependent variable y and the latter’s derivatives 
expressed as  Our goal is to solve such an equation; that is, to find a function such that it and its 
various derivatives satisfy this equation. We will study a type of differential equation called a first order separable differential 
equation. This is the type in which only the variables appear and in which the expressions involving the variable x can be 
separated to one side of the equal sign and the expressions involving the variable y can be separated to other side of the equal sign. 
This separation is accomplished most easily by using differentials. 
 
Examples: 

(a) Find the xy-equation of the curve through  whose slope at any point is the ratio of its first coordinate to its second  
coordinate. 

  Solve:  

  What is C? This latter equation implies,  

 using our initial condition, that  

 Thus,  

  Answer:   

(b) Find  such that  and  

  Solve:  What is C?  

Then, as before,  

 Thus,  

  Answer:  

(c) Find the equation of motion of an object moving vertically near the surface of Planet X with initial velocity  and  a  height  
  from the surface. Planet X has an acceleration due to gravity of  

  Solve:  

           What is ? Then, as before,  

   Thus, so far, Again, 

                                   What is ?  

   Then, as before,  

  Answer:  

If the object is dropped, then  and the solution becomes  

If the object is on the surface of Planet X, then  and the solution becomes  

If Planet X is the Earth, then / second2. 
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Remark: To every differentiation rule there corresponds a differential rule. For example, to the product rule there corresponds the 
differential rule  


